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Rotation about z axis	





Rotation about x axis	





Rotation about y axis	





General rotations	



•  A rotation in 2D is around a point	



•  A rotation in 3D is around an axis	


–  so 3D rotation is w.r.t a line, not just a point	


–  there are many more 3D rotations than 2D	



•  a 3D space around a given point, not just 1D	
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 3D	





Specifying rotations	



•  In 2D, a rotation just has an angle	


–  if it’s about a particular center, it’s a point and angle	



•  In 3D, specifying a rotation is more complex	


–  basic rotation about origin: unit vector (axis) and angle	



•  convention: positive rotation is CCW when vector is pointing at you	


–  about different center: point (center), unit vector, and angle	



•  this is redundant: think of a second point on the same axis...	



•  Alternative: Euler angles	


–  stack up three coord axis rotations	





Coming up with the matrix	



•  Showed matrices for coordinate axis rotations	


–  but what if we want rotation about some random axis?	



•  Compute by composing elementary transforms	


–  transform rotation axis to align with x axis	


–  apply rotation	


–  inverse transform back into position	



•  Just as in 2D this can be interpreted as a similarity transform	





Building general rotations	



•  Using elementary transforms you need three	


–  translate axis to pass through origin	


–  rotate about y to get into x-y plane	


–  rotate about z to align with x axis	



•  Alternative: construct frame and change coordinates	


–  choose p, u, v, w to be orthonormal frame with p and u matching the 

rotation axis	


–  apply similarity transform T = F Rx(θ ) F–1	





Orthonormal frames in 3D 	

	



•  Useful tools for constructing transformations	



•  Recall rigid motions	


–  affine transforms with pure rotation	


–  columns (and rows) form right handed ONB	



•  that is, an orthonormal basis	





Building 3D frames	



•  Given a vector a and a secondary vector b	


–  The u axis should be parallel to a; the u–v plane should contain b	



•  u = u / ||u||	


•  w = u x b; w = w / ||w||	


•  v = w x u	



•  Given just a vector a	


–  The u axis should be parallel to a; don’t care about orientation about 

that axis	


•  Same process but choose arbitrary b first	


•  Good choice is not near a: e.g. set smallest entry to 1	





Building general rotations	



•  Alternative: construct frame and change coordinates	


–  choose p, u, v, w to be orthonormal frame with p and u matching the 

rotation axis	


–  apply similarity transform T = F Rx(θ ) F–1	



–  interpretation: move to x axis, rotate, move back	


–  interpretation: rewrite u-axis rotation in new coordinates	


–  (each is equally valid)	





Building transforms from points	



•  Recall2D affine transformation has 6 degrees of freedom 
(DOFs)	


–  this is the number of “knobs” we have to set to define one	



•  Therefore 6 constraints suffice to define the transformation	


–  handy kind of constraint: point p maps to point q (2 constraints at once)	


–  three point constraints add up to constrain all 6 DOFs���

(i.e. can map any triangle to any other triangle)	



•  3D affine transformation has 12 degrees of freedom	


–  count them by looking at the matrix entries we’re allowed to change	



•  Therefore 12 constraints suffice to define the transformation	


–  in 3D, this is 4 point constraints���

(i.e. can map any tetrahedron to any other tetrahedron)	





Transforming normal vectors	



•  Transforming surface normals	


–  differences of points (and therefore tangents) transform OK	


–  normals do not	




