
3D Transformations	

COMP 770	

Fall 2011	

Translation	

Scaling	

Rotation about z axis	

Rotation about x axis	

Rotation about y axis	

General rotations	

•  A rotation in 2D is around a point	

•  A rotation in 3D is around an axis	

–  so 3D rotation is w.r.t a line, not just a point	

–  there are many more 3D rotations than 2D	

•  a 3D space around a given point, not just 1D	

2D	

 3D	

Specifying rotations	

•  In 2D, a rotation just has an angle	

–  if it’s about a particular center, it’s a point and angle	

•  In 3D, specifying a rotation is more complex	

–  basic rotation about origin: unit vector (axis) and angle	

•  convention: positive rotation is CCW when vector is pointing at you	

–  about different center: point (center), unit vector, and angle	

•  this is redundant: think of a second point on the same axis...	

•  Alternative: Euler angles	

–  stack up three coord axis rotations	

Coming up with the matrix	

•  Showed matrices for coordinate axis rotations	

–  but what if we want rotation about some random axis?	

•  Compute by composing elementary transforms	

–  transform rotation axis to align with x axis	

–  apply rotation	

–  inverse transform back into position	

•  Just as in 2D this can be interpreted as a similarity transform	

Building general rotations	

•  Using elementary transforms you need three	

–  translate axis to pass through origin	

–  rotate about y to get into x-y plane	

–  rotate about z to align with x axis	

•  Alternative: construct frame and change coordinates	

–  choose p, u, v, w to be orthonormal frame with p and u matching the

rotation axis	

–  apply similarity transform T = F Rx(θ) F–1	

Orthonormal frames in 3D 	

	

•  Useful tools for constructing transformations	

•  Recall rigid motions	

–  affine transforms with pure rotation	

–  columns (and rows) form right handed ONB	

•  that is, an orthonormal basis	

Building 3D frames	

•  Given a vector a and a secondary vector b	

–  The u axis should be parallel to a; the u–v plane should contain b	

•  u = u / ||u||	

•  w = u x b; w = w / ||w||	

•  v = w x u	

•  Given just a vector a	

–  The u axis should be parallel to a; don’t care about orientation about

that axis	

•  Same process but choose arbitrary b first	

•  Good choice is not near a: e.g. set smallest entry to 1	

Building general rotations	

•  Alternative: construct frame and change coordinates	

–  choose p, u, v, w to be orthonormal frame with p and u matching the

rotation axis	

–  apply similarity transform T = F Rx(θ) F–1	

–  interpretation: move to x axis, rotate, move back	

–  interpretation: rewrite u-axis rotation in new coordinates	

–  (each is equally valid)	

Building transforms from points	

•  Recall2D affine transformation has 6 degrees of freedom
(DOFs)	

–  this is the number of “knobs” we have to set to define one	

•  Therefore 6 constraints suffice to define the transformation	

–  handy kind of constraint: point p maps to point q (2 constraints at once)	

–  three point constraints add up to constrain all 6 DOFs���

(i.e. can map any triangle to any other triangle)	

•  3D affine transformation has 12 degrees of freedom	

–  count them by looking at the matrix entries we’re allowed to change	

•  Therefore 12 constraints suffice to define the transformation	

–  in 3D, this is 4 point constraints���

(i.e. can map any tetrahedron to any other tetrahedron)	

Transforming normal vectors	

•  Transforming surface normals	

–  differences of points (and therefore tangents) transform OK	

–  normals do not	

